Total replacement of dietary inorganic phosphate (
Pi
) by a novel consensus bacterial 6-phytase variant (
PhyG
) in phytate-rich diets (>0.3% phytate-P) was investigated in 2 trials using growth performance and bone quality as outcome measures. Both trials utilized a completely randomized design with 5 dietary treatments across 4 phases: starter (0–10 d), grower (10–21 d), finisher 1 (21–35 d), and finisher 2 (35–42 d). Treatments comprised a nutritionally adequate positive control (
PC
) diet containing monocalcium phosphate and 4 experimental diets (IPF1, IPF2, IPF3, and IPF4), all containing no added Pi and reduced in Ca by 0.2 to 0.3% units vs. PC. IPF1contained PhyG at 1,000 FTU/kg (all phases); IPF2 contained PhyG at 1,000 FTU/kg (all phases) and was additionally reduced in digestible AA, ME, and sodium (−0.2 to −0.4% points, −74 kcal/kg, –0.04% points, respectively, vs. PC); IPF3 contained PhyG at 3,000 FTU/kg in starter, 2,000 FTU/kg in grower, and 1,000 FTU/kg in finisher phases; and IPF4 contained xylanase (2,000 U/kg) and PhyG (2,000 FTU/kg in starter, 1,500 FTU/kg in grower, and 1,000 FTU/kg in finisher phases) and was additionally reduced in ME (–71 kcal/kg vs. PC). Ross 308 broilers were used (trial 1: n = 1,200 mixed sex; 24 birds per pen × 10 replicates; trial 2: n = 1,300 males; 26 birds × 10 replicates). During all phases in both trials, all IPF treatments maintained or improved BW, ADG, ADFI, FCR and BW-corrected FCRc and bone quality parameters vs. PC. vs. PC, treatment IPF3 increased ADG during starter phase (+10.8%) and reduced overall FCRc (−12 points,
P
< 0.05) in Trial 1, and increased overall ADG (+4.4%), day 35 and day 42 BW (+3.5%, +4.9%), and reduced overall FCRc (−11 points) in Trial 2 (
P
< 0.05). IPF4 produced equivalent performance to IPF3 (both trials). These are the first data to demonstrate total replacement of Pi by microbial phytase during an entire growth cycle in broiler diets.