Mycoplasma gallisepticum is among the most economically significant mycoplasmas causing production losses in poultry. Seven melt-curve and agarose gel-based mismatch amplification mutation assays (MAMAs) and one PCR are provided in the present study to distinguish the M. gallisepticum vaccine strains and field isolates based on mutations in the crmA, gapA, lpd, plpA, potC, glpK, and hlp2 genes. A total of 239 samples (M. gallisepticum vaccine and type strains, pure cultures, and clinical samples) originating from 16 countries and from at least eight avian species were submitted to the presented assays for validation or in blind tests. A comparison of the data from 126 samples (including sequences available at GenBank) examined by the developed assays and a recently developed multilocus sequence typing assay showed congruent typing results. The sensitivity of the melt-MAMA assays varied between 10 1 and 10 4 M. gallisepticum template copies/reaction, while that of the agarose-MAMAs ranged from 10 3 to 10 5 template copies/reaction, and no cross-reactions occurred with other Mycoplasma species colonizing birds. The presented assays are also suitable for discriminating multiple strains in a single sample. The developed assays enable the differentiation of live vaccine strains by targeting two or three markers/vaccine strain; however, considering the high variability of the species, the combined use of all assays is recommended. The suggested combination provides a reliable tool for routine diagnostics due to the sensitivity and specificity of the assays, and they can be performed directly on clinical samples and in laboratories with basic PCR equipment.