2005
DOI: 10.1007/s00023-005-0220-1
|View full text |Cite
|
Sign up to set email alerts
|

The Einstein-Vlasov System with a Scalar Field

Abstract: We study the Einstein-Vlasov system coupled to a nonlinear scalar field with a nonnegative potential in locally spatially homogeneous space-time, as an expanding cosmological model. It is shown that solutions of this system exist globally in time. When the potential of the scalar field is of an exponential form, the cosmological model corresponds to accelerated expansion. The Einstein-Vlasov system coupled to a nonlinear scalar field whose potential is of an exponential form shows the causal geodesic completen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
18
0

Year Published

2005
2005
2016
2016

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 67 publications
(20 citation statements)
references
References 11 publications
2
18
0
Order By: Relevance
“…Lee considers in [107] the case where a non-linear scalar field is coupled to Vlasov matter. The form of the energy momentum tensor then reads Here ϕ is the scalar field and V is a potential, and the Bianchi identities lead to the following equation for the scalar field: Under the assumption that V is a non-negative C 2 function, global existence to the future is obtained, and if the potential is restricted to the form where , then future geodesic completeness is proven.…”
Section: The Cosmological Cauchy Problemmentioning
confidence: 99%
“…Lee considers in [107] the case where a non-linear scalar field is coupled to Vlasov matter. The form of the energy momentum tensor then reads Here ϕ is the scalar field and V is a potential, and the Bianchi identities lead to the following equation for the scalar field: Under the assumption that V is a non-negative C 2 function, global existence to the future is obtained, and if the potential is restricted to the form where , then future geodesic completeness is proven.…”
Section: The Cosmological Cauchy Problemmentioning
confidence: 99%
“…More details on this question can be found in [5], [21]. In fact, several authors realized the interest of coupling scalar field to other fields equations; see for instance [4], [18], [20], [24], [8].…”
Section: Introductionmentioning
confidence: 99%
“…A similar discussion for a potential with a strictly positive lower bound is given in [2]. For wider classes of potentials the only mathematical theorems concern spatially homogeneous spacetimes of Bianchi types I-VIII, including normal matter [8,10,13].…”
Section: Discussionmentioning
confidence: 99%