The influence of additives of nanofillers containing nanoparticles of copper oxides stabilized by a polymer matrix of maleinized high-pressure polyethylene obtained by the mechano-chemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber by x-ray phase and differential thermal analyses is studied. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, that is probably due to the synergistic effect of interaction of copper-containing nanoparticles with maleic groups of maleinated high-pressure polyethylene. It is shown that nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber can be processed both by pressing method and by injection molding and extrusion methods that expands the scope of its application