Flexural ultrasonic transducers are a widely available type of ultrasonic sensor used for flow measurement, proximity, and industrial metrology applications. The flexural ultrasonic transducer is commonly operated in one of the axisymmetric modes of vibration in the low-kilohertz range, under 50 kHz, but there is an increasing demand for higher frequency operation, towards 300 kHz. At present, there are no reports of the measurement of high-frequency vibrations using flexural ultrasonic transducers. This research reports on the measurement of high-frequency vibration in flexural ultrasonic transducers, utilizing electrical impedance and phase measurement, laser Doppler vibrometry, and response spectrum analysis through the adoption of two flexural ultrasonic transducers in a transmitreceive configuration. The outcomes of this research demonstrate the ability of flexural ultrasonic transducers to measure highfrequency ultrasound in air, vital for industrial metrology.