Tissue engineering aims to develop bionic scaffolds as alternatives to autologous vascular grafts due to their limited availability. This study introduces a novel wet-electrospinning fabrication technique to create small-diameter, uniformly aligned tubular scaffolds. By combining this innovative method with conventional electrospinning, a bionic tri-layer scaffold that mimics the zonal structure of vascular tissues is produced. The inner and outer layers consist of PCL/Gelatin and PCL/PLGA fibers, respectively, while the middle layer is crafted using PCL through Wet Vertical Magnetic Rod Electrospinning (WVMRE). The scaffold’s morphology is analyzed using Scanning Electron Microscopy (SEM) to confirm its bionic structure. The mechanical properties, degradation profile, wettability, and biocompatibility of the scaffold are also characterized. To enhance hemocompatibility, the scaffold is crosslinked with heparin. The results demonstrate sufficient mechanical properties, good wettability of the inner layer, proper degradability of the inner and middle layers, and overall good biocompatibility. In conclusion, this study successfully develops a small-diameter tri-layer tubular scaffold that meets the required specifications.