2013
DOI: 10.1287/mnsc.1120.1685
|View full text |Cite
|
Sign up to set email alerts
|

The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation

Abstract: W e study the drivers of the emergence of opinion leaders in a networked community where users establish links to others, indicating their "trust" for the link receiver's opinion. This leads to the formation of a network, with high in-degree individuals being the opinion leaders. We use a dyad-level proportional hazard model with time-varying covariates to model the growth of this network. To estimate our model, we use Weighted Exogenous Sampling with Bayesian Inference, a methodology that we develop for fast … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
37
0
3

Year Published

2015
2015
2024
2024

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 88 publications
(40 citation statements)
references
References 52 publications
0
37
0
3
Order By: Relevance
“…For approximately 20 million observations there were only 20421 instances where the dependent variable equaled 1. Hence, to deal with the computational requirements of our dyad-level model with time-varying covariates, we estimated our model with the recently proposed Weighted Exogenous Sampling with Bayesian Inference (WESBI) (Lu et al 2013).…”
Section: Control Variablesmentioning
confidence: 99%
See 1 more Smart Citation
“…For approximately 20 million observations there were only 20421 instances where the dependent variable equaled 1. Hence, to deal with the computational requirements of our dyad-level model with time-varying covariates, we estimated our model with the recently proposed Weighted Exogenous Sampling with Bayesian Inference (WESBI) (Lu et al 2013).…”
Section: Control Variablesmentioning
confidence: 99%
“…By combining these two sets of observations, we constructed a much smaller dataset ("sampled data"). And then, we used the weighted log-conditional-likelihood function for Bayesian inference over our sampled data (Lu et al 2013). The intuition behind the weighted log-conditional-likelihood is to weigh each sampled observation by the population elements it represents in order to make the choice-based sample simulate a random exogenous sample.…”
Section: Control Variablesmentioning
confidence: 99%
“…Dessa forma, o esforço de gerenciamento pelo blogueiro dos recursos dos quais o blog depende tende a ser decrescente à medida que a página adquire atratividade e se torna menos instável, uma consequência do padrão ricos ficam mais ricos (Barabási & Albert, 1999;Lu, Jerath, & Singh, 2013;Newman, 2003;Sundararajan et al, 2013).…”
Section: Busca Por Pioneirismounclassified
“…Entretanto, a perspectiva de Barabási e Albert (1999) não discute a possibilidade da superação dessas barreiras pelo gerente do blog, estando intrinsicamente estabelecido que os ricos ficam mais ricos, de modo que o ator altamente atrativo tende a ser atrativo para sempre, sem precisar exercer esforços substanciais na aquisição de recursos, ainda que outros atores centrais surjam e coexistam na rede (Freeman, 2004;Harrigan, Achananuparp, & Lim, 2012;Lu et al, 2013). Nesse contexto, apesar de diversos estudos (e.g., Ackland & O'Neil, 2011;Chau & Xu, 2012;Yang & Counts, 2010) corroborarem que os blogs são estruturados sob o mecanismo de conexão preferencial, é natural se perguntar de que maneira então é possível que blogueiros pobres cumpram o desafio de se tornarem ricos, já que a rede é dinâmica e a todo o momento blogs são conectados, reconectados e desligados, abrindo espaço para que blogs menos atrativos assumam posições de páginas altamente atrativas ao longo do tempo.…”
Section: Conclusões Implicações E Limitaçõesunclassified
See 1 more Smart Citation