Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Protein post-translational modifications (PTMs) represent a crucial aspect of cellular regulation, occurring after protein synthesis from mRNA. These modifications, which include phosphorylation, ubiquitination, acetylation, methylation, glycosylation, Sumoylation, and palmitoylation, play pivotal roles in modulating protein function. PTMs influence protein localization, stability, and interactions, thereby orchestrating a variety of cellular processes in response to internal and external stimuli. Dysregulation of PTMs is linked to a spectrum of diseases, such as cancer, inflammatory diseases, and neurodegenerative disorders. UFMylation, a type of PTMs, has recently gained prominence for its regulatory role in numerous cellular processes, including protein stability, response to cellular stress, and key signaling pathways influencing cellular functions. This review highlights the crucial function of UFMylation in the development and progression of tumors, underscoring its potential as a therapeutic target. Moreover, we discuss the pivotal role of UFMylation in tumorigenesis and malignant progression, and explore its impact on cancer immunotherapy. The article aims to provide a comprehensive overview of biological functions of UFMylation and propose how targeting UFMylation could enhance the effectiveness of cancer immunotherapy strategies.
Protein post-translational modifications (PTMs) represent a crucial aspect of cellular regulation, occurring after protein synthesis from mRNA. These modifications, which include phosphorylation, ubiquitination, acetylation, methylation, glycosylation, Sumoylation, and palmitoylation, play pivotal roles in modulating protein function. PTMs influence protein localization, stability, and interactions, thereby orchestrating a variety of cellular processes in response to internal and external stimuli. Dysregulation of PTMs is linked to a spectrum of diseases, such as cancer, inflammatory diseases, and neurodegenerative disorders. UFMylation, a type of PTMs, has recently gained prominence for its regulatory role in numerous cellular processes, including protein stability, response to cellular stress, and key signaling pathways influencing cellular functions. This review highlights the crucial function of UFMylation in the development and progression of tumors, underscoring its potential as a therapeutic target. Moreover, we discuss the pivotal role of UFMylation in tumorigenesis and malignant progression, and explore its impact on cancer immunotherapy. The article aims to provide a comprehensive overview of biological functions of UFMylation and propose how targeting UFMylation could enhance the effectiveness of cancer immunotherapy strategies.
Autophagy is an intrinsic breakdown system that recycles organelles and macromolecules, which influences metabolic pathways, differentiation, and thereby cell survival. Oral health is an essential component of integrated well-being, and it is critical for developing therapeutic interventions to understand the molecular mechanisms underlying the maintenance of oral homeostasis. However, because of the complex dynamic relationship between autophagy and oral health, associated treatment modalities have not yet been well elucidated. Determining how autophagy affects oral health at the molecular level may enhance the understanding of prevention and treatment of targeted oral diseases. At the molecular level, hard and soft oral tissues develop because of complex interactions between epithelial and mesenchymal cells. Aging contributes to the progression of various oral disorders including periodontitis, oral cancer, and periapical lesions during aging. Autophagy levels decrease with age, thus indicating a possible association between autophagy and oral disorders with aging. In this review, we critically review various aspects of autophagy and their significance in the context of various oral diseases including oral cancer, periapical lesions, periodontal conditions, and candidiasis. A better understanding of autophagy and its underlying mechanisms can guide us to develop new preventative and therapeutic strategies for the management of oral diseases.
Traditional tumor diagnosis methods rely on tissue biopsy, which can be invasive and unsuitable for long-term monitoring of tumor dynamics. The advent of liquid biopsy has notably improved the overall management of patients with cancer. Liquid biopsy techniques primarily involve detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The present review focuses on ctDNA because of its significance in tumor diagnosis, monitoring and treatment. The use of ctDNA-based liquid biopsy offers several advantages, including non-invasive or minimally invasive collection methods, the ability to conduct repeated assessment and comprehensive insights into tumor biology. It serves crucial roles in disease management by facilitating screening of high-risk patients, dynamically monitoring therapeutic responses and diagnosis. Furthermore, ctDNA can be used to demonstrate pseudo-progression, monitor postoperative tumor status and guide adaptive treatment plans. The present study provides a comprehensive review of ctDNA, exploring its origins, metabolism, detection methods, clinical role and the current challenges associated with its application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.