The simultaneous detection of multiple analytes using electrochemical biosensor arrays has demonstrated significant potential in various fields, including medical diagnostics. These platforms are designed to be low‐cost, easy to use, and offer fast detection of a range of molecules. This concept article discusses the components necessary to achieve multiplexing with electrochemical biosensor arrays. The various methods used to fabricate electrode arrays of different types are discussed. Furthermore, the methods for the selective immobilization of multiple different bioreceptors onto individual electrodes within the array, a crucial step essential for conferring specificity to the analytical processes, are presented with relevant examples. We have focused on enzymes, antibodies and aptamers as examples of bioreceptors that have been deployed in various multianalyte electrochemical detection platforms. Finally, we discuss the key challenges associated with their application for the analysis of real samples and provide a future outlook on possible strategies that can be used to overcome these challenges.