The Framework of Achievement Bests provides an explanatory account into the process of optimization, which details how a person reaches from one level of best practice to that of a more optimal level. This framework, we contend, is significant in its explanatory account of personal growth, an internal state of flourishing, and the achievement of exceptionality. This chapter conceptualizes the applicability of the Framework of Achievement Bests to the context of instructional designs. We highlight the tenet of element interactivity, which is integral to the design of a particular mathematics instruction and its potential effectiveness. Element interactivity entails the interaction between elements within a learning material. Owing to the limited working memory capacity, an instruction that incurs high level of element interactivity would impose high cognitive load leading to reduced learning. Our conceptualization postulates the possible alignment between suboptimal and optimal instructional designs with realistic and optimal levels of best practice, respectively. This postulation (e.g., suboptimal instructional design → realistic level of best practice), which recognizes the importance of cognitive load imposition, is significant from a practical point of view. By focusing on instructional designs, it is possible to assist individuals to achieve optimal best practice in learning.