Reversible addition-fragmentation chain transfer (RAFT) polymerization of 2,3-dimethyl-1,3-butadiene (DMB) in solution and on the surface of silica nanoparticles was investigated and PDMB-grafted silica nanoparticles (PDMB-g-SiO 2 NPs) with different chain densities and molecular weights were prepared. The kinetic studies of DMB polymerization mediated by silica anchored RAFT agents at different graft densities were investigated and compared to the polymerization mediated by the corresponding free RAFT agent. The PDMB-g-SiO 2 NPs were cured to prepare rubbery films and obtain matrix-free nanocomposites, which exhibited a good dispersion of silica nanoparticles and improved mechanical properties compared to the unfilled crosslinked rubber.Additional supporting information may be found in the online version of this article.