Protein interactions are crucial for maintaining homeostasis. Heat shock factor 1 (HSF1), a transcription factor that interacts with various proteins, is highly expressed in squamous cell carcinoma (SCC) of the cervix. The aim of the present study was to investigate the protein interaction profile of HSF1 in cervical SCC. Proteins interacting with HSF1 in SCC tissue and non-cancerous control (Ctrl) tissue were obtained by immunoprecipitation, separated by SDS-PAGE, identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and analyzed using bioinformatics methods. A total of 220 and 241 proteins were identified by mass spectrometry in the tissues of Ctrl and SCC samples, respectively, among which 172 were detected exclusively in SCC (Pro-S), 151 exclusively in Ctrl (Pro-C) and 69 in both groups (Pro-B). The protein interaction profiles were different in each group; the STRING database identified three proteins that interacted with HSF1 directly, including insulin-like growth factor 1 receptor and small nuclear RNA-activating protein complex subunit 4 in Pro-C and small ubiquitin-related modifier 1 in Pro-S. Functional enrichment analysis of Gene Ontology revealed that the top terms were alternative splicing in Pro-S and polymorphism in Pro-C. In Pro-S, more categories were related to protein modification, such as phosphorylation, ubiquitination and acetylation. Therefore, HSF1 may influence the occurrence and development of cervical SCC by interacting with specific proteins.Abbreviations: HSF1, heat shock factor 1; IP, immunoprecipitation; MS, mass spectrometry; SCC, squamous cell carcinoma of cervix Key words: heat shock factor 1, protein interaction, squamous cell carcinoma of cervix, immunoprecipitation, mass spectrometry