When selecting feeding, hiding, or resting areas, animals face multiple decisions with different fitness consequences. To maximize efficiency, individuals can either collect personal information, or use information gathered and transmitted by other individuals (social information). Within group living species, organisms often specialize in either generating social information or using information gathered by other groups members. That is the case of the Spix’s disk-winged bat, Thyroptera tricolor. This species uses contact calls during roost finding. Social groups are composed by a mix of vocal and non-vocal individuals and those vocal roles appear to be consistent over time. Moreover, their vocal behavior can predict roost finding in natural settings, suggesting that vocal individuals are capable of generating social information that can be used by other group members. To date, however, we do not know if when presented with social information (contact calls) during roost finding, vocal individuals will make more or less use of these cues, compared to non-vocal individuals. To answer this question, we broadcast contact calls from a roost inside a flight cage to test whether vocal individuals could find a potential roost faster than non-vocal individuals when they encounter sounds that signal the presence of a roost site. Our results suggest that non-vocal individuals select roost sites based primarily on social information, whereas vocal individuals do not rely heavily on social information when deciding where to roost. This study provides the first link between vocal behavior and the use of social information during the search for roosting resources in bats. Incorporating ideas of social roles, and how individuals decide when and where to move based on the use of social information, may shed some light on these and other outstanding questions about the social lives of bats.