Gnatiuk, T. (2018). Reduction of anthropogenic loading on an agroecosystem by increasing its energy efficiency. Biosystems Diversity, 26(2), 71-76. doi:10.15421/011811For full functioning , an artificially created agroecosystem should include qualitatively and quantitatively balanced components. This is possible if the anthropogenic burden on such a system is reduced and energy costs are balanced within it. In order to substantiate this statement, a production experiment was conducted in which short-term crop rotation was introduced on the land of an experimental field. Determination of energy efficiency of crop rotations and crop rotations in general was carried out by calculating technological maps of cultivating the corresponding crops. The higher the energy efficiency, the less the energy spent on cultivating crops and the less the cost of obtaining a unit of production from the corresponding area. After three years of research, we have determined that the most energy-intensive crop in short-term rotation is potatoes, less energy is spent on the cultivation of field pea-oat mixture, rye, oats with sowings of clover, and clover alone. The most energy-efficient was the organic fertilizer system (manure) for growing winter rye with a coefficient of energy efficiency of 5.10. For cultivation of field pea with oats for the same fertilizer system, the cultivation efficiency was 5.70. Growing oats with sowings of clover and using an organic system (manure) had an energy utility of 4.11. After application of the organic system (siderate) for the cultivation of winter rye, the coefficient of energy efficiency was 5.03 and for potatoes 2.21. After using the organoleptic system 50 : 50 to grow perennial grasses, this ratio was 33.05, and after the use of the mineral system for growing potatoes, 2.13. However for the cultivation of perennial grasses, we used the aftereffects of fertilizers introduced under the clover of the first year, and in the second year, under the perennial grasses, fertilizers were not applied at all, but for the cultivation of clover in crop rotation it is expedient to use an organomineral system of 50 : 50. Adhering to the basic principles of biological agriculture, namely the introduction of a scientifically grounded alternation of crops, rejecting the use of chemical plant protection products, avoiding the replacement of organic fertilizers (manure and siderate) by mineral fertilizers, it is possible to reduce energy costs for growing crops of crop rotation and crop rotation in general as a consequence, and thus to reduce the anthropogenic load on the whole agroecosystem .