The well-known Eneström-Kakeya theorem states that polynomial $p(z)=\sum_{\nu =0}^n a_\nu z^\nu$, where $0\leq a_0\leq a_1\leq \cdots\leq a_n$, has all of its (complex) zeros in $|z|\leq 1$. Many generalizations of this result exist in the literature. In this paper, we extend one such result to the quaternionic setting and state one of the possible corollaries.