The security of passwords generated by the graphic lattices is based on the difficulty of the graph isomorphism, graceful tree conjecture, and total coloring conjecture. A graphic lattice is generated by a graphic base and graphical operations, where a graphic base is a group of disjointed, connected graphs holding linearly independent properties. We study the existence of graphic bases with odd-graceful total colorings and show graphic lattices by vertex-overlapping and edge-joining operations; we prove that these graphic lattices are closed to the odd-graceful total coloring.