Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a major threat to global public health. Epidemiological and infection controls associated with CRKP are challenging because of several potential elements involved in a complicated cycle of transmission. Here, we proposed a comprehensive mathematical model to investigate the transmission dynamics of CRKP, determine factors affecting the prevalence, and evaluate the impact of interventions on transmission. The model includes the essential compartments, which are uncolonized, asymptomatic colonized, symptomatic colonized, and relapsed patients. Additionally, symptomatic colonized and relapsed patients were further classified into subpopulations according to their number of treatment failures or relapses. We found that the admission of colonized patients and use of antibiotics significantly impacted the endemic transmission in health care units. Thus, we introduced the treatment efficacy, defined by combining the treatment duration and probability of successful treatment, to characterize and describe the effects of antibiotic treatment on transmission. We showed that a high antibiotic treatment efficacy results in a significantly reduced likelihood of patient readmission in the health care unit. Additionally, our findings demonstrate that CRKP transmission with different epidemiological characteristics must be controlled using distinct interventions.