2021
DOI: 10.37236/9536
|View full text |Cite
|
Sign up to set email alerts
|

The Erdős-Hajnal Property for Graphs with No Fixed Cycle as a Pivot-Minor

Abstract: We prove that for every integer $k$, there exists $\varepsilon>0$ such that for every $n$-vertex graph with no pivot-minors isomorphic to $C_k$, there exist disjoint sets $A$, $B$ such that $|A|,|B|\ge\varepsilon n$, and $A$ is complete or anticomplete to $B$. This proves the analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minors isomorphic to $C_k$.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?