Ca(2+) is the most omnipresent pollutant on earth, in higher concentrations a real threat to all living cells. When [Ca(2+)]i rises above 100 nM (=resting level), excess Ca(2+) needs to be confined in the SER and mitochondria, or extruded by the different Ca(2+)-ATPases. The evolutionary origin of eggs and sperm cells has a crucial, yet often overlooked link with Ca(2+)-homeostasis. Because there is no goal whatsoever in evolution, gametes did neither originate "with the purpose" of generating a progeny nor of increasing fitness by introducing meiosis. The explanation may simply be that females "invented the trick" to extrude eggs from their body as an escape strategy for getting rid of toxic excess Ca(2+) resulting from a sex-hormone driven increased influx into particular cells and tissues. The production of Ca(2+)-rich milk, seminal fluid in males and all secreted proteins by eukaryotic cells may be similarly explained. This view necessitates an upgrade of the role of the RER-Golgi system in extruding Ca(2+). In the context of insect metamorphosis, it has recently been (re)discovered that (some isoforms of) Ca(2+)-ATPases act as membrane receptors for some types of lipophilic ligands, in particular for endogenous farnesol-like sesquiterpenoids (FLS) and, perhaps, for some steroid hormones as well. A novel paradigm, tentatively named "Calcigender" emerges. Its essence is: gender-specific physiotypes ensue from differential Ca(2+)-homeostasis enabled by genetic differences, farnesol/FLS and sex hormones. Apparently the body of reproducing females gets temporarily more poisoned by Ca(2+) than the male one, a selective benefit rather than a disadvantage.