Apiaceae are aromatic herbs producing essential oils which are used on an industrial scale for various purposes. Notably, Apiaceae essential oils may replace synthetic insecticides keeping most of their efficacy and avoiding environmental pollution and human poisoning. In the present work, we explored the insecticidal potential of the essential oils from five Apiaceae taxa, namely Sison amomum, Echinophora spinosa, Heracleum sphondylium subsp. sphondylium, Heracleum sphondylium subsp. ternatum, and Trachyspemum ammi, as well as their major constituents (sabinene, p-cymene, terpinolene, myristicin, and thymol), against the filariasis vector Culex quinquefasciatus. For the purpose, the essential oils were obtained by hydrodistillation and their composition was achieved by gas chromatography/mass spectrometry (GC/MS). Their acute toxicity on third instar larvae of C. quinquefasciatus was determined. The two most active essential oils were those from T. ammi fruits and E. spinosa roots, showing LC 50 below 20 ll/l and LD 90 below 50 ll/l. These oils were dominated by the monoterpene phenol thymol and the phenylpropanoid myristicin, respectively, which showed the strongest larvicidal activity (LC 50 of 15.1 and 16.3 ll/l, respectively) among the pure compounds tested. These results showed that Apiaceae may be useful as source of larvicidal compounds to be used for the development of cheap, effective and eco-friendly insecticidal formulations.