Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Southeast Asian xyleborine ambrosia beetle fauna is reviewed for the first time. Thirty-four genera and 315 species are reviewed, illustrated, and keyed to genera and species. Sixty-three new species are described: Amasa cycloxystersp. nov., Amasa galeodermasp. nov., Amasa gibbosasp. nov., Amasa linisp. nov., Amasa tropidacronsp. nov., Amasa youliisp. nov., Ambrosiophilus caliginestrissp. nov., Ambrosiophilus indicussp. nov., Ambrosiophilus lannaensissp. nov., Ambrosiophilus papilliferussp. nov., Ambrosiophilus wantaneeaesp. nov., Anisandrus achaetesp. nov., Anisandrus aucosp. nov., Anisandrus auratipilussp. nov., Anisandrus congruenssp. nov., Anisandrus cryphaloidessp. nov., Anisandrus feroniasp. nov., Anisandrus herasp. nov., Anisandrus paragogussp. nov., Anisandrus sinivalisp. nov., Anisandrus venustussp. nov., Anisandrus xuannusp. nov., Arixyleborus crassiorsp. nov., Arixyleborus phiaoacensissp. nov., Arixyleborus setosussp. nov., Arixyleborus silvanussp. nov., Arixyleborus sittichayaisp. nov., Arixyleborus titanussp. nov., Coptodryas amydrasp. nov., Coptodryas carinatasp. nov., Coptodryas inornatasp. nov., Cyclorhipidion amasoidessp. nov., Cyclorhipidion amputatumsp. nov., Cyclorhipidion denticaudasp. nov., Cyclorhipidion muticumsp. nov., Cyclorhipidion obesulumsp. nov., Cyclorhipidion petrosumsp. nov., Cyclorhipidion truncaudinumsp. nov., Cyclorhipidion xeniolumsp. nov., Euwallacea geminussp. nov., Euwallacea neptissp. nov., Euwallacea subalpinussp. nov., Euwallacea testudinatussp. nov., Heteroborips fastigatussp. nov., Heteroborips indicussp. nov., Microperus latesalebrinussp. nov., Microperus minaxsp. nov., Microperus sagmatussp. nov., Streptocranus petilussp. nov., Truncaudum bullatumsp. nov., Xyleborinus cuneatussp. nov., Xyleborinus disgregussp. nov., Xyleborinus echinopterussp. nov., Xyleborinus ephialtodessp. nov., Xyleborinus huifenyinaesp. nov., Xyleborinus jianghuansunisp. nov., Xyleborinus thaiphamisp. nov., Xyleborinus tritussp. nov., Xyleborus opacussp. nov., Xyleborus sunisaesp. nov., Xyleborus yunnanensissp. nov., Xylosandrus bellinsulanussp. nov., Xylosandrus spinifersp. nov.. Thirteen new combinations are given: Ambrosiophilus consimilis (Eggers) comb. nov., Anisandrus carinensis (Eggers) comb. nov., Anisandrus cristatus (Hagedorn) comb. nov., Anisandrus klapperichi (Schedl) comb. nov., Anisandrus percristatus (Eggers) comb. nov., Arixyleborus resecans (Eggers) comb. nov., Cyclorhipidion armiger (Schedl) comb. nov., Debus quadrispinus (Motschulsky) comb. nov., Heteroborips tristis (Eggers) comb. nov., Leptoxyleborus machili (Niisima) comb. nov., Microperus cruralis (Schedl) comb. nov., Planiculus shiva (Maiti & Saha) comb. nov., Xylosandrus formosae (Wood) comb. nov. Twenty-four new synonyms are proposed: Ambrosiophilus osumiensis (Murayama, 1934) (= Xyleborus nodulosus Eggers, 1941 syn. nov.); Ambrosiophilus subnepotulus (Eggers, 1930) (= Xyleborus cristatuloides Schedl, 1971 syn. nov.); Ambrosiophilus sulcatus (Eggers, 1930) (= Xyleborus sinensis Eggers, 1941 syn. nov.; = Xyleborus sulcatulus Eggers, 1939 syn. nov.); Anisandrus hirtus (Hagedorn, 1904) (= Xyleborus hirtipes Schedl, 1969 syn. nov.); Cnestus protensus (Eggers, 1930) (= Cnestus rostratus Schedl, 1977 syn. nov.); Cyclorhipidion bodoanum (Reitter, 1913) (= Xyleborus misatoensis Nobuchi, 1981 syn. nov.); Cyclorhipidion distinguendum (Eggers, 1930) (= Xyleborus fukiensis Eggers, 1941 syn. nov.; = Xyleborus ganshoensis Murayama, 1952 syn. nov.); Cyclorhipidion inarmatum (Eggers, 1923) (= Xyleborus vagans Schedl, 1977 syn. nov.); Debus quadrispinus (Motschulsky, 1863) (= Xyleborus fallax Eichhoff, 1878 syn. nov.); Euwallacea gravelyi (Wichmann, 1914) (= Xyleborus barbatomorphus Schedl, 1951 syn. nov.); Euwallacea perbrevis (Schedl, 1951) (= Xyleborus molestulus Wood, 1975 syn. nov.; Euwallacea semirudis (Blandford, 1896) (= Xyleborus neohybridus Schedl, 1942 syn. nov.); Euwallacea sibsagaricus (Eggers, 1930) (= Xyleborus tonkinensis Schedl, 1934 syn. nov.); Euwallacea velatus (Sampson, 1913) (= Xyleborus rudis Eggers, 1930 syn. nov.); Microperus kadoyamaensis (Murayama, 1934) (= Xyleborus pubipennis Schedl, 1974 syn. nov.; =Xyleborus denseseriatus Eggers, 1941 syn. nov.); Stictodex dimidiatus (Eggers, 1927) (=Xyleborus dorsosulcatus Beeson, 1930 syn. nov.); Webbia trigintispinata Sampson, 1922 (= Webbia mucronatus Eggers, 1927 syn. nov.); Xyleborinus artestriatus (Eichhoff, 1878) (= Xyelborus angustior [sic] Eggers, 1925 syn. nov.; = Xyleborus undatus Schedl, 1974 syn. nov.); Xyleborinus exiguus (Walker, 1859) (= Xyleborus diversus Schedl, 1954 syn. nov.); Xyleborus muticus Blandford, 1894 (= Xyleborus conditus Schedl, 1971 syn. nov.; = Xyleborus lignographus Schedl, 1953 syn. nov.). Seven species are removed from synonymy and reinstated as valid species: Anisandrus cristatus (Hagedorn, 1908), Cyclorhipidion tenuigraphum (Schedl, 1953), Diuncus ciliatoformis (Schedl, 1953), Euwallacea gravelyi (Wichmann, 1914), Euwallacea semirudis (Blandford, 1896), Microperus fulvulus (Schedl, 1942), Xyleborinus subspinosus (Eggers, 1930).
The Southeast Asian xyleborine ambrosia beetle fauna is reviewed for the first time. Thirty-four genera and 315 species are reviewed, illustrated, and keyed to genera and species. Sixty-three new species are described: Amasa cycloxystersp. nov., Amasa galeodermasp. nov., Amasa gibbosasp. nov., Amasa linisp. nov., Amasa tropidacronsp. nov., Amasa youliisp. nov., Ambrosiophilus caliginestrissp. nov., Ambrosiophilus indicussp. nov., Ambrosiophilus lannaensissp. nov., Ambrosiophilus papilliferussp. nov., Ambrosiophilus wantaneeaesp. nov., Anisandrus achaetesp. nov., Anisandrus aucosp. nov., Anisandrus auratipilussp. nov., Anisandrus congruenssp. nov., Anisandrus cryphaloidessp. nov., Anisandrus feroniasp. nov., Anisandrus herasp. nov., Anisandrus paragogussp. nov., Anisandrus sinivalisp. nov., Anisandrus venustussp. nov., Anisandrus xuannusp. nov., Arixyleborus crassiorsp. nov., Arixyleborus phiaoacensissp. nov., Arixyleborus setosussp. nov., Arixyleborus silvanussp. nov., Arixyleborus sittichayaisp. nov., Arixyleborus titanussp. nov., Coptodryas amydrasp. nov., Coptodryas carinatasp. nov., Coptodryas inornatasp. nov., Cyclorhipidion amasoidessp. nov., Cyclorhipidion amputatumsp. nov., Cyclorhipidion denticaudasp. nov., Cyclorhipidion muticumsp. nov., Cyclorhipidion obesulumsp. nov., Cyclorhipidion petrosumsp. nov., Cyclorhipidion truncaudinumsp. nov., Cyclorhipidion xeniolumsp. nov., Euwallacea geminussp. nov., Euwallacea neptissp. nov., Euwallacea subalpinussp. nov., Euwallacea testudinatussp. nov., Heteroborips fastigatussp. nov., Heteroborips indicussp. nov., Microperus latesalebrinussp. nov., Microperus minaxsp. nov., Microperus sagmatussp. nov., Streptocranus petilussp. nov., Truncaudum bullatumsp. nov., Xyleborinus cuneatussp. nov., Xyleborinus disgregussp. nov., Xyleborinus echinopterussp. nov., Xyleborinus ephialtodessp. nov., Xyleborinus huifenyinaesp. nov., Xyleborinus jianghuansunisp. nov., Xyleborinus thaiphamisp. nov., Xyleborinus tritussp. nov., Xyleborus opacussp. nov., Xyleborus sunisaesp. nov., Xyleborus yunnanensissp. nov., Xylosandrus bellinsulanussp. nov., Xylosandrus spinifersp. nov.. Thirteen new combinations are given: Ambrosiophilus consimilis (Eggers) comb. nov., Anisandrus carinensis (Eggers) comb. nov., Anisandrus cristatus (Hagedorn) comb. nov., Anisandrus klapperichi (Schedl) comb. nov., Anisandrus percristatus (Eggers) comb. nov., Arixyleborus resecans (Eggers) comb. nov., Cyclorhipidion armiger (Schedl) comb. nov., Debus quadrispinus (Motschulsky) comb. nov., Heteroborips tristis (Eggers) comb. nov., Leptoxyleborus machili (Niisima) comb. nov., Microperus cruralis (Schedl) comb. nov., Planiculus shiva (Maiti & Saha) comb. nov., Xylosandrus formosae (Wood) comb. nov. Twenty-four new synonyms are proposed: Ambrosiophilus osumiensis (Murayama, 1934) (= Xyleborus nodulosus Eggers, 1941 syn. nov.); Ambrosiophilus subnepotulus (Eggers, 1930) (= Xyleborus cristatuloides Schedl, 1971 syn. nov.); Ambrosiophilus sulcatus (Eggers, 1930) (= Xyleborus sinensis Eggers, 1941 syn. nov.; = Xyleborus sulcatulus Eggers, 1939 syn. nov.); Anisandrus hirtus (Hagedorn, 1904) (= Xyleborus hirtipes Schedl, 1969 syn. nov.); Cnestus protensus (Eggers, 1930) (= Cnestus rostratus Schedl, 1977 syn. nov.); Cyclorhipidion bodoanum (Reitter, 1913) (= Xyleborus misatoensis Nobuchi, 1981 syn. nov.); Cyclorhipidion distinguendum (Eggers, 1930) (= Xyleborus fukiensis Eggers, 1941 syn. nov.; = Xyleborus ganshoensis Murayama, 1952 syn. nov.); Cyclorhipidion inarmatum (Eggers, 1923) (= Xyleborus vagans Schedl, 1977 syn. nov.); Debus quadrispinus (Motschulsky, 1863) (= Xyleborus fallax Eichhoff, 1878 syn. nov.); Euwallacea gravelyi (Wichmann, 1914) (= Xyleborus barbatomorphus Schedl, 1951 syn. nov.); Euwallacea perbrevis (Schedl, 1951) (= Xyleborus molestulus Wood, 1975 syn. nov.; Euwallacea semirudis (Blandford, 1896) (= Xyleborus neohybridus Schedl, 1942 syn. nov.); Euwallacea sibsagaricus (Eggers, 1930) (= Xyleborus tonkinensis Schedl, 1934 syn. nov.); Euwallacea velatus (Sampson, 1913) (= Xyleborus rudis Eggers, 1930 syn. nov.); Microperus kadoyamaensis (Murayama, 1934) (= Xyleborus pubipennis Schedl, 1974 syn. nov.; =Xyleborus denseseriatus Eggers, 1941 syn. nov.); Stictodex dimidiatus (Eggers, 1927) (=Xyleborus dorsosulcatus Beeson, 1930 syn. nov.); Webbia trigintispinata Sampson, 1922 (= Webbia mucronatus Eggers, 1927 syn. nov.); Xyleborinus artestriatus (Eichhoff, 1878) (= Xyelborus angustior [sic] Eggers, 1925 syn. nov.; = Xyleborus undatus Schedl, 1974 syn. nov.); Xyleborinus exiguus (Walker, 1859) (= Xyleborus diversus Schedl, 1954 syn. nov.); Xyleborus muticus Blandford, 1894 (= Xyleborus conditus Schedl, 1971 syn. nov.; = Xyleborus lignographus Schedl, 1953 syn. nov.). Seven species are removed from synonymy and reinstated as valid species: Anisandrus cristatus (Hagedorn, 1908), Cyclorhipidion tenuigraphum (Schedl, 1953), Diuncus ciliatoformis (Schedl, 1953), Euwallacea gravelyi (Wichmann, 1914), Euwallacea semirudis (Blandford, 1896), Microperus fulvulus (Schedl, 1942), Xyleborinus subspinosus (Eggers, 1930).
The Leptomias group represents one of the most diverse taxonomic group of weevils in the Qinghai‐Tibet Plateau and its adjacent areas. Despite the potential of hidden diversity, relatively few comprehensive studies have been conducted on species diversity in this taxonomic group. In this study, we performed DNA barcoding analysis for species of the Leptomias group using a comprehensive DNA barcode dataset that included 476 sequences representing 54 morphospecies. Within the dataset, our laboratory contributed 474 sequences, and 390 sequences were newly generated for this study. The average Kimura 2‐parameter distances among morphospecies and genera were 0.76% and 19.15%, respectively. In 94.4% of the species, the minimum interspecific distances exceeded the maximum intraspecific distances, indicating the presence of barcode gaps in most species of Leptomias group. The application of Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Bayesian Poisson tree processes, jMOTU, and Neighbor‐joining tree methods revealed 45, 45, 63, 54, and 55 distinct clusters representing single species, respectively. Additionally, a total of four morphospecies, Leptomias kangmarensis, L. midlineatus, L. siahus, and L. sp.9RL, were found to be assigned to multiple subclade each, indicating the geographical divergences and the presence of cryptic diversity. Our findings of this study demonstrate that Qinghai‐Tibet Plateau exhibits a higher species diversity of the Leptomias group, and it is imperative to investigate cryptic species within certain morphospecies using integrative taxonomic approaches in future studies. Moreover, the construction of a DNA barcode reference library presented herein establishes a robust foundational dataset to support forthcoming research on weevil taxonomy, phylogenetics, ecology, and evolution.
Native to Southeastern Asia, the ambrosia beetle Xylosandrus compactus is invasive worldwide. Its invasion is favoured by its cryptic lifestyle, symbiosis with a fungus that facilitates a broad range of host plants, and predominant sib-mating reproduction. X. compactus invaded Africa more than a century ago and the Americas and Pacific Islands in the middle of the twentieth century. It was not detected in Europe before 2011, when it was first reported in Italy before quickly spreading to France, Greece and Spain. Despite the negative environmental, agricultural and economic consequences of the invasion of X. compactus, its invasion history and main pathways remain poorly documented. We used COI and RAD sequencing to (i) characterise the worldwide genetic structure of the species, (ii) disentangle the origin(s) of the non-native populations on the three invaded continents and (iii) analyse the genetic diversity and pathways within each invaded region. Three mitochondrial lineages were identified in the native range. Populations invading Europe and the American-Pacific region originated from the first lineage and were only slightly genetically differentiated at nuclear SNP markers, suggesting independent introductions from close sources in or near Shanghai, ca. 60 years apart. Populations invading Africa originated from the second lineage, likely from India or Vietnam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.