2005
DOI: 10.1090/s0894-0347-05-00487-x
|View full text |Cite
|
Sign up to set email alerts
|

The essentially tame local Langlands correspondence, I

Abstract: Let F F be a non-Archimedean local field (of characteristic 0 0 or p p ) with finite residue field of characteristic p p . An irreducible smooth representation of the Weil group of F F is called essentially tame if its restriction to wild inertia is a sum of characters. The set of isomorphism classes of irreducible, essentially tame representations of dimension n n is denoted … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
67
0
1

Year Published

2006
2006
2020
2020

Publication Types

Select...
4
4

Relationship

4
4

Authors

Journals

citations
Cited by 69 publications
(68 citation statements)
references
References 23 publications
0
67
0
1
Order By: Relevance
“…To this end, one seeks to make the correspondence explicit/effective. For GL n , this has been the subject of a series of papers by Bushnell-Henniart [6][7][8]10]; for other groups, work has concentrated on regular depth zero irreducible cuspidal representations [13,24,26] and epipelagic irreducible cuspidal representations [9,18,25,27,46,47], with the most general work by Kaletha [28] on regular cuspidal representations.…”
Section: Introductionmentioning
confidence: 99%
“…To this end, one seeks to make the correspondence explicit/effective. For GL n , this has been the subject of a series of papers by Bushnell-Henniart [6][7][8]10]; for other groups, work has concentrated on regular depth zero irreducible cuspidal representations [13,24,26] and epipelagic irreducible cuspidal representations [9,18,25,27,46,47], with the most general work by Kaletha [28] on regular cuspidal representations.…”
Section: Introductionmentioning
confidence: 99%
“…The twisting character μ has been computed, at least when E/F is totally ramified [13]. The answer is easy to state only when n is odd; moreover when n is even, the answer does not coincide in general with the recipe conjectured in [49].…”
Section: Explicit Langlands Correspondence In the Tame Casementioning
confidence: 99%
“…In the tame case Howe parametrized both G o (n) and A o (G n ) in terms of admissible pairs (E/F, θ), where E/F is a degree n extension, θ a character of E × not factorizing through an intermediate norm N F/E F ⊂ E ⊂ E, E = E, and such that if θ restricted to principal units of E does factorize, then E/E is unramified. There is then a canonical map (E/F, θ) → π(E/F, θ) giving a bijection between admissible pairs up to isomorphism and A o (G n ); see [49] for a precise construction, or [12].…”
Section: Explicit Langlands Correspondence In the Tame Casementioning
confidence: 99%
See 1 more Smart Citation
“…Ce travail s'inscrit dans une série d'articles [HL1], [HL2], [HL3] dans lesquels les auteurs se proposent d'étendreà la caractéristique non nulle les théories du changement de base et de l'induction automorphe pour G, connues pour F de caractéristique nulle. Par exemple le lemme fondamental démontré ici permettra d'étendreà la caractéristique > 0 le travail de G. Henniart et R. Herb [HH] prouvant l'existence d'une application de relèvement entre représentations de H(= GL(m, E)) et représentations de G. Notons que ces résultats sur l'induction automorphe et le changement de base, sont utilisés dans un travail commun de C. Bushnell et G. Henniart [BH1], [BH2], pour décrire explicitement et en toute caractéristique la correspondance de Langlands entre représentations irréductibles de degré n du groupe de Weil de F et représentations irréductibles cuspidales de G, dans le cas où n est premier a la caractéristique résiduelle de F.…”
Section: Introductionunclassified