A detailed chemical kinetic model for homogeneous combustion of the light hydrocarbon fuels CH4 and C2H6 in the intermediate temperature range roughly 500–1100 K, and pressures up to 100 bar has been developed and validated experimentally. Rate constants have been obtained from critical evaluation of data for individual elementary reactions reported in the literature with particular emphasis on the conditions relevant to the present work. The experiments, involving CH4/O2 and CH4/C2H6/O2 mixtures diluted in N2, have been carried out in a high‐pressure flow reactor at 600–900 K, 50–100 bar, and reaction stoichiometries ranging from very lean to fuel‐rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Finally, the mechanism was extended with a number of reactions important at high temperature and tested against data from shock tubes, laminar flames, and flow reactors. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 778–807, 2008