Time functions with asymptotically hyperbolic geometry play an increasingly important role in many areas of relativity, from computing black hole perturbations to analyzing wave equations. Despite their significance, many of their properties remain underexplored. In this expository article, I discuss hyperbolic time functions by considering the hyperbola as the relativistic analog of a circle in two-dimensional Minkowski space and argue that suitably defined hyperboloidal coordinates are as natural in Lorentzian manifolds as spherical coordinates are in Riemannian manifolds.