Placerias hesternus, a Late Triassic dicynodont, is one of the last megafaunal synapsids of the Mesozoic. The species has a tusk-like projection on its maxillary bone, known as the caniniform process. This process has been hypothesized to be sexually dimorphic since the 1950s, however this claim has not been thoroughly investigated quantitatively. Here, we examined maxillae, premaxillae, quadrates, and fibulae from a single population from the Placerias Quarry in the Blue Mesa Member of the Chinle Formation, near St. Johns, Arizona, USA to determine if the caniniform process is dimorphic. We made a total of 25 measurements from the four bones and used a maximum likelihood framework to compare the fit of unimodal versus bimodal distributions for each set of measurements. Our results from complete maxillae reveal that the caniniform process has two distinct morphs, with a shorter and longer form. This interpretation is substantiated both by strong statistical support for bimodal distribution of caniniform lengths, and by clustering analysis that clearly distinguishes two morphs for the maxillae. Clustering analysis also shows support for potential dimorphism in the shape of the quadrate. However, no measurements from elements other than the maxilla have a strong likelihood of bimodal distribution. These results support the long-standing hypothesis that the caniniform in Placerias was dimorphic. Alternative explanations to sexual dimorphism that could account for the dimorphism among these fossils include the presence of juveniles in the sample or time-averaged sampling of a chronospecies, but both have been previously rejected for the Placerias Quarry population. The lack of strong dimorphism in non-maxilla elements and increased variation in caniniform length of the large-caniniform morph suggest that the caniniform is a secondary sexual trait, possibly used in intraspecific competition.