2022
DOI: 10.3389/fphar.2022.1009797
|View full text |Cite
|
Sign up to set email alerts
|

The evolutionary conservation of eukaryotic membrane-bound adenylyl cyclase isoforms

Abstract: The nine membrane-delimited eukaryotic adenylyl cyclases are pseudoheterodimers with an identical domain order of seven (nine) distinct subdomains. Bioinformatics show that the protein evolved from a monomeric bacterial progenitor by gene duplication and fusion probably in a primordial eukaryotic cell around 1.5 billion years ago. Over a timespan of about 1 billion years, the first fusion product diverged into nine highly distinct pseudoheterodimeric isoforms. The evolutionary diversification ended approximate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 56 publications
0
2
0
Order By: Relevance
“…The channels’ activity is tightly coupled to oscillations in concentrations of specific intracellular messengers like Ca 2+ or cAMP ( Craven and Zagotta, 2006 ; Biel and Michalakis, 2009 ; Johnstone et al, 2018 ; Stengl and Schröder, 2021 ). The Ca 2+ oscillations in turn interlink with endogenous cAMP oscillations, e.g., via Ca 2+ -dependent adenylyl cyclases, or vice versa via cAMP-dependent Ca 2+ permeable ion channels ( Biel and Michalakis, 2009 ; Islam, 2020 ; Schultz, 2022 ; Li et al, 2023a ). Via different intracellular messenger cascades multiscale membrane-associated oscillations link to multiscale TTFL oscillators/clocks engaged in gene regulation networks ( Colwell, 2011 ; Patton et al, 2016 ; Stengl and Arendt, 2016 ; Hastings et al, 2019 ; Perfitt et al, 2020 ; Steven et al, 2020 ; Stengl and Schröder, 2021 ).…”
Section: Discussion: Our Novel Hypothesis Final Conclusion and Outlookmentioning
confidence: 99%
“…The channels’ activity is tightly coupled to oscillations in concentrations of specific intracellular messengers like Ca 2+ or cAMP ( Craven and Zagotta, 2006 ; Biel and Michalakis, 2009 ; Johnstone et al, 2018 ; Stengl and Schröder, 2021 ). The Ca 2+ oscillations in turn interlink with endogenous cAMP oscillations, e.g., via Ca 2+ -dependent adenylyl cyclases, or vice versa via cAMP-dependent Ca 2+ permeable ion channels ( Biel and Michalakis, 2009 ; Islam, 2020 ; Schultz, 2022 ; Li et al, 2023a ). Via different intracellular messenger cascades multiscale membrane-associated oscillations link to multiscale TTFL oscillators/clocks engaged in gene regulation networks ( Colwell, 2011 ; Patton et al, 2016 ; Stengl and Arendt, 2016 ; Hastings et al, 2019 ; Perfitt et al, 2020 ; Steven et al, 2020 ; Stengl and Schröder, 2021 ).…”
Section: Discussion: Our Novel Hypothesis Final Conclusion and Outlookmentioning
confidence: 99%
“…The Ca 2+ oscillations in turn interlink with endogenous cAMP oscillations, e.g. via Ca 2+ -dependent adenylyl cyclases, or vice versa via cAMP-dependent Ca 2+ permeable ion channels (Biel and Michalakis, 2009;Islam, 2020;Schultz, 2022;Li et al, 2023a). Via different intracellular messenger cascades multiscale membrane-associated oscillations link to multiscale TTFL oscillators/clocks engaged in gene regulation networks (Colwell, 2011;Patton et al, 2016;Stengl and Arendt, 2016;Hastings et al, 2019;Perfitt et al, 2020;Steven et al, 2020;Stengl and Schröder, 2021).…”
Section: Discussion: Our Novel Hypothesis Final Conclusion and Outlookmentioning
confidence: 99%