Background: Horses produce only one foal from an eleven-month gestation period, making the maintenance of high reproductive rates essential. Genetic bottlenecks and inbreeding can increase the frequency of deleterious variants, resulting in reduced reproductive levels in a population. In this study we examined the influence of inbreeding levels on foaling rate, gestation length and secondary sex ratio in Australian Thoroughbred mares. We also investigated the genetic change in these traits throughout the history of the breed. Phenotypic data were obtained from 27,262 breeding records of Thoroughbred mares provided by three Australian stud farms. Inbreeding was estimated using the pedigree of each individual dating back to the foundation of the breed in the eighteenth century. Results: While both gestation length and foaling rate were heritable, no measurable effect of inbreeding on either trait was found. However, we did find that the genetic value for both traits had decreased within recent generations. A number of environmental factors also had significant effects on foaling rate and gestation length. Secondary sex ratio had only an extremely small paternal heritable effect and was not susceptible to environmental influences. Conclusions: In contrast to racing performance, inbreeding had no measurable effect on foaling rate or gestation length in Australian Thoroughbred horses. This could be because the level of inbreeding in the population examined is not high enough to show a discernible effect on reproductive traits. Populations that experience higher levels of inbreeding due to use of artificial reproductive technologies or extremely small population sizes may show a more pronounced reduction in natural foaling rate or gestation length. It is also possible that the intensive management techniques used in the Thoroughbred population masks any negative effects of inbreeding. The decrease in the genetic value of foaling rate is likely to be because horses with unfavourable genetic potential have not yet been selected out of the population. The change in genetic value of gestation length may be due to selective breeding favouring horses with shorter pregnancies. We also found that prioritising the mating of older mares, and avoiding out of season mating could lead to an increased breeding success.