Recently, it was observed that the concentration/heat transfer of pure/nano fluids are finally governed by singular second-order boundary value problems with exponential coefficients. These coefficients were transformed into polynomials and therefore the governing equations become singular in a new independent variable. Unfortunately, the published approximate solutions in the literature suffer from some weaknesses as showed by one of the present coauthors. Hence, the exact solution for such types of problems becomes a challenge. In this paper, a straightforward approach is presented to obtaining the exact solution for such class of singular second-order boundary value problems. The results are also applied to some selected problems within the literature. Accordingly, the published solutions are recovered as special cases of the present ones.