Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we address various optical soliton solutions and demonstrate the different dynamics of solitary waves to a (3+1)-dimensional nonlinear Schrödinger equation (NLSE) with parabolic law (NLSE) using a newly created powerful and effective method named as the extended generalized Riccati equation mapping method. This technique presents an organized manner to reveal the essential dynamics. There is great significance of the nonlinear Schrödinger equations and their several formulations in numerous fields of science, particularly in nonlinear optics, optical fibers, quantum electronics, and plasma physics. Through the use of numerical simulations and mathematical analysis, we explore the characteristics and behavior of these solitary wave solutions in a variety of scientific contexts. These results demonstrate the essential complexity of the governing equation and yield novel derived solutions. These solutions contribute to a better understanding of nonlinear wave phenomena by highlighting the fundamental dynamics establishing solitary waves in the NLSE. To enhance our wider knowledge, we provide effective graphic representations of the nonlinear wave structures in the derived solutions utilizing a variety of graphs, including 3D, 2D, and density plots. Moreover, a specific transformation has been applied to transform the system into a planar dynamical system, and several phase portraits have been presented to examine its behavior. Furthermore, upon introducing a perturbed term, chaotic behavior has been observed across different parameter values through both two-dimensional and three-dimensional graphics.
In this paper, we address various optical soliton solutions and demonstrate the different dynamics of solitary waves to a (3+1)-dimensional nonlinear Schrödinger equation (NLSE) with parabolic law (NLSE) using a newly created powerful and effective method named as the extended generalized Riccati equation mapping method. This technique presents an organized manner to reveal the essential dynamics. There is great significance of the nonlinear Schrödinger equations and their several formulations in numerous fields of science, particularly in nonlinear optics, optical fibers, quantum electronics, and plasma physics. Through the use of numerical simulations and mathematical analysis, we explore the characteristics and behavior of these solitary wave solutions in a variety of scientific contexts. These results demonstrate the essential complexity of the governing equation and yield novel derived solutions. These solutions contribute to a better understanding of nonlinear wave phenomena by highlighting the fundamental dynamics establishing solitary waves in the NLSE. To enhance our wider knowledge, we provide effective graphic representations of the nonlinear wave structures in the derived solutions utilizing a variety of graphs, including 3D, 2D, and density plots. Moreover, a specific transformation has been applied to transform the system into a planar dynamical system, and several phase portraits have been presented to examine its behavior. Furthermore, upon introducing a perturbed term, chaotic behavior has been observed across different parameter values through both two-dimensional and three-dimensional graphics.
The present work deals with the investigation of the time‐fractional Klein–Gordon (K‐G) model, which has great importance in theoretical physics with applications in various fields, including quantum mechanics and field theory. The main motivation of this work is to analyze modulation instability and soliton solution of the time‐fractional K‐G model. Comparative studies are investigated by β‐fraction derivative and M‐fractional derivative. For this purpose, we used unified and advanced exp(−ϕ(ξ))‐expansion approaches that are highly important tools to solve the fractional model and are used to create nonlinear wave pattern (both solitary and periodic wave) solutions for the time‐fractional K‐G model. For the special values of constraints, the periodic waves, lumps with cross‐periodic waves, periodic rogue waves, singular soliton, bright bell shape, dark bell shape, kink and antikink shape, and periodic wave behaviors are some of the outcomes attained from the obtained analytic solutions. The acquired results will be useful in comprehending the time‐fractional K‐G model’s dynamical framework concerning associated physical events. By giving specific values to the fractional parameters, graphs are created to compare the fractional effects for the β‐fraction derivative and M‐fractional derivative. Additionally, the modulation instability spectrum is expressed utilizing a linear analysis technique, and the modulation instability bands are shown to be influenced by the third‐order dispersion. The findings indicate that the modulation instability disappears for negative values of the fourth order in a typical dispersion regime. Consequently, it was shown that the techniques mentioned previously could be an effective tool to generate unique, precise soliton solutions for numerous uses, which are crucial to theoretical physics. This work provided the effect of the recently updated two fraction forms, and in the future, we will integrate the space–time M‐fractional form of the governing model by using the extended form of the Kudryashov method. Maple 18 is utilized as the simulation tool.
In this paper, we consider the fractional Schrödinger–Hirota (FSH) equation in the sense of a conformable fractional derivative. Through a traveling wave transformation, we change the FSH equation to an ordinary differential equation. We obtain several exact solutions through the auxiliary equation method, including soliton, exponential and periodic solutions, which are useful to analyze the behaviors of the FSH equation. We show that the auxiliary equation method improves the speed of the discovery of exact solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.