This paper elaborates on the results of an exhaustive study regarding the Earth's position in the universe based on the Cosmic Microwave Background (CMB) radiation map, which is the latest discovery in modern astronomy. CMB radiation provides crucial insights into the early distribution of mass and energy in the universe. The aim of this research is to understand the theory and mechanisms behind the formation of polarity structures in the CMB and analyze their correlation with Earth's position in the overall structure of the universe. Intensity measurement data of CMB radiation published by COBE, WMAP, and Planck present temperature distribution data in coordinates in FITS (Flexible Image Transport System) format files. Subsequently, a spherical harmonic transformation is performed to obtain spherical harmonic coefficients a_lm as equations that represent dipole, quadrupole, octupole models, and various other multipole models. The analysis of the correlation in the temperature distribution of CMB radiation involves detailing various patterns found in the dipole, quadrupole, and octopole models, demonstrating quasi-symmetry characteristics with Earth at its center. An analysis of anisotropic CMB data yields an interesting hypothesis that the Earth's position plays a role in shaping the structure of the universe on a certain scale. Even more extremely, it can be said that Earth is at the center of the universe. This finding prompts profound contemplation about Earth's position in the structure of the cosmos, opening the door for further research in this field.