This paper proposes a synthesis framework for sound hybridization that creates sho-like sounds with articulations that are the same as that of a given input signal. This approach has three components: acoustic feature extraction, physical parameter estimation, and waveform synthesis. During acoustic feature extraction, the amplitude and fundamental frequency of the input signal are extracted, and in the parameter estimation stage these values are converted to control parameters for the physical model. Then, using these control parameters, a sound waveform is calculated during the synthesis stage. Based on the proposed method, a mapping function between acoustical parameters and physical parameters was determined using recorded sho sounds. Then, sounds with various articulations were synthesized using several kinds of instrumental tones. As a result, sounds with natural frequency and amplitude variations such as vibrato and portamento were created. The proposed method was used in music composition and proved to be effective.