The Existence and Averaging Principle for Caputo Fractional Stochastic Delay Differential Systems with Poisson Jumps
Zhenyu Bai,
Chuanzhi Bai
Abstract:In this paper, we obtain the existence and uniqueness theorem for solutions of Caputo type fractional stochastic delay differential systems (FSDDSs) with Poisson jumps by utilizing delayed perturbation of Mittag-Leffler function. Moreover, by using Burkholder-Davis-Gundy's inequality, Doob's martingale inequality and Holder inequality, we prove that the solution of the averaged FSDDSs converges to that of the standard FSDDSs in the sense of Lp. Some known results in the literature are… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.