Many features of the oceanic plates cannot be explained by conductive cooling with age. A number of these anomalies require additional convective thermal sources at depths below the plate: mid-plate swells, the evolution of fracture zones, the mean depth and heat flow relationships with age and the observation of small scale (150-250 km) geoid and topography anomalies in the Central Pacific and Indian oceans.Convective models are presented of the formation and evolution of these features.In particular, the effect of a shallow low viscosity layer in the uppermost mantle on mantle flow and its geoid, topography, gravity and heat flow expression is explored. A simple numerical model is employed of convection in a fluid which has a low viscosity layer lying between a rigid bed and a constant viscosity region.Finite element caiculations have been used to determine the effects of (1) the viscosity contrast between the two fluid layers, (2) the thickness of the low viscosity zone, (3) the thickness of the conducting lid, and (4) the Rayleigh number of the fluid based on the viscosity of the lower layer.A model simple for mid-plate swells is that they are the surface expression of a convection cell driven by a heat flux from below.The low viscosity zone causes the top boundary layer of the convection cell to thin and, at high viscosity contrasts and Rayleigh numbers, it can cause the boundary layer to go unstable.The low viscosity zone also mitigates the transmission of normal stress to the conducting lid so that the topography and geoid anomalies decrease.The geoid anomaly decreases faster than the topography anomaly, however, so that the depth of compensation can appear to be well within the conducting lid.Because the boundary layer is thinned, the elastic plate thickness also decreases and, since the low viscosity allows the fluid to flow faster in the top layer, the uplift time decreases. as well. We have compared the results of this modeling to data at the Hawaii, Bermuda, Cape Verde and Marquesas swells, and have found that it can reproduce their 3 observed anomalies. The viscosity contrasts that are required range from 0.2-0.01, which are in agreement with other estimates of shallow viscosity variation in the upper mantle. Also, the estimated viscosity contrast decreases as the age of the swell increases. This trend is consistent with theoretical estimates of the variation of such a low viscosity zone with age.Fracture zones juxtapose segments of the oceanic plates of different ages and thermal structures. The flow induced by the horizontal temperature gradient at the fracture zone initially downwells immediately adjacent to the fracture zone on the older side, generating cells on either side of the plume. The time scale and characteristic wavelength of this flow depends initially on the viscosity near the largest temperature gradient in the fluid which, in our model, is the viscosity of the low viscosity layer. They therefore depend on .both the Rayleigh number and the viscosity contrast between the laye...