This paper presents a multisegment coal mill model that covers the whole milling process from mill startup to shutdown. This multisegment mathematical model is derived through analysis of energy transferring, heat exchange, and mass flow balances. The work presented in the paper focuses on modeling E-type vertical spindle coal mills that are widely used in coal-fired power plants. An evolutionary computation technique is adopted to identify the unknown model parameters using the on-site measurement data. The identified parameters are then validated with different sets of online measured data. Validation results indicate that the model is accurate enough to represent the whole process of coal mill dynamics and can be used for prediction of the mill dynamic performance. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.