This thesis aims to investigate the properties of hadronic matter by analyzing fluctuations of conserved charges. A transport model (SMASH) is used for these studies to achieve this. The first part of this thesis focuses on examining transport coefficients, specifically the diffusion coefficients of conserved charges and the shear viscosity. The second part investigates equal-time correlations of particle numbers in the form of cumulants. The last chapter studies different aspects of the isobar collision systems Ru and Zr. As a first step, the hadronic medium and interactions between its constituents are introduced, and simultaneously, their impact on transport coefficients is investigated. The methodology is verified by comparing the results of SMASH with Chapman-Enskog calculations, followed by examining 3-to-1 multi-particle reactions, revealing their influence on shear viscosity and electrical diffusion. The analysis of the full hadron gas considers angle-dependent cross-sections and additional elastic cross-sections via the AQM description, showing significant impacts on transport coefficients. The dependency on the number of degrees of freedom is explored, with noticeable effects on diffusion coefficients but a smaller influence on the shear viscosity. At non-zero baryon chemical potential, the diffusion coefficients are strongly influenced, while the shear viscosity remains unaffected. Overall, the study underscores the importance of individual cross-sections and the modeling of interactions on transport coefficients. The following chapter explores fluctuations of conserved charges, crucial for understanding phase transitions in heavy-ion collision from the quark-gluon plasma to the hadronic phase. Using SMASH, the impact of global charge conservation on particle number cumulants in subvolumes of boxes simulating infinite matter is studied. Comparisons with simpler systems highlights the influence of hadronic interactions on cumulants, especially via charge annihilation processes and the results from SMASH shows agreement with analytical calculations. Calculations at finite baryon chemical potential reveals a transition from a Poisson to Skellam distribution within the net proton cumulants. It is shown that an unfolding procedure to obtain the net baryon fluctuations from the net proton ones deviates from the actual net baryon result, particularly in larger volumes. Finally, net proton correlations at vanishing baryon chemical potential align with ALICE measurements and the net proton cumulants are unaffected by deuteron formation. In the next step, the goal is to investigate critical fluctuations in the hadronic medium. Therefore, the hadronic system is initialized with critical equilibrium fluctuations by coupling the hadron resonance gas with the 3D Ising model. The single-particle probability distributions are derived from the principle of maximum entropy. Evolving these distributions in SMASH, their development in an expanding sphere adjusted to experimental conditions can be analyzed. It reveals resonance decay and formations as the primary source that affects the particle cumulants. Because of isospin randomization processes, critical fluctuations are better preserved in net nucleon numbers. However, for the strongest coupling investigated in this work, correlations of the critical field are still present in the final state of the evolution in the net proton fluctuations. Examining cumulant dependence on rapidity windows shows a non-monotonic trend. In the third part, collisions involving the isobars Ru and Zr are studied at a center-of-mass energy of 200 GeV. Initially, SMASH is used to study the initial conditions to hydrodynamical simulations, emphasizing the importance of the nuclear structure of isobars on the geometry of the collision area. It is found that the deformation parameters notably influence the initial state. Correlations between nucleon-nucleon pairs on eccentricity fluctuations yield no significant effect. Subsequently, the hydrodynamic model vHLLE evolves the previously explored initial conditions and for the transition between the hydrodynamic and kinetic descriptions, the Cooper-Frye formula is used. Usage of the canonical ensemble ensures the exact conservation of the conserved charges B, Q, and S. The neutron skin effect, which changes the charge distribution within Ru nuclei, is additionally considered. Fluctuations are assessed, revealing suppression in large rapidity windows due to global charge conservation. The hadronic phase modifies fluctuations of net pions, net kaons, and net protons via annihilation processes, yet fluctuations remain unaffected by the neutron skin effect.