Beta-catenin is involved in both cell -cell adhesion and in transcriptional regulation by the Wingless/Wnt signalling pathway. Alterations of components of this pathway have been suggested to play a central role in tumorigenesis. The present study investigated, by immunohistochemistry and immunoblotting, the protein expression and localisation of b-catenin, adenomatous polyposis coli (APC), glycogen synthase kinase 3b (GSK3b) and lymphocyte enhancer factor-1 (Lef-1) in normal human ovaries and in epithelial ovarian tumours in vivo and in vitro. Immortalised human ovarian surface epithelium and ovarian cancer cell cells (OVCAR-3) expressed b-catenin, APC, GSK3b and Lef-1. Nuclear staining of b-catenin and Lef-1 were demonstrated only in OVCAR-3 cells. There were significant increases of b-catenin and GSK3b, while APC was reduced in ovarian cancer compared to the normal ovary. Beta-catenin and Lef-1 were coimmunoprecipitated in ovarian tumours, but not in the normal ovary. Nuclear localisation of b-catenin or Lef-1 could not be demonstrated in the normal ovary or in the ovarian tumours. The absence of nuclear localisation of b-catenin could be due to an increased binding to the cadherin -a-catenin cell adhesion complex. In fact, we have earlier reported an increased expression of E-cadherin in ovarian adenocarcinomas. In summary, this study demonstrates an increase in the expression of components of the Wingless/Wnt pathway in malignant ovarian tumours. The increase suggests a role for this signalling pathway in cell transformation and in tumour progression. However, it remains to be demonstrated whether it is an increased participation of b-catenin in transcriptional regulation, or in the stabilisation of cellular integrity, or both, that is the crucial event in ovarian tumorigenesis.