In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(∼) of Väänänen's firstorder team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.