VEGFs activate 3 receptor tyrosine kinases, VEGFR-1, VEGFR-2, and VEGFR-3, promoting angiogenic and lymphangiogenic signaling. The extracellular receptor domain (ECD) consists of 7 Ig-homology domains; domains 2 and 3 (D23) represent the ligandbinding domain, whereas the function of D4-7 is unclear. Ligand binding promotes receptor dimerization and instigates transmembrane signaling and receptor kinase activation. In the present study, isothermal titration calorimetry showed that the Gibbs free energy of VEGF-A, VEGF-C, or VEGF-E binding to D23 or the full-length ECD of VEGFR-2 is dominated by favorable entropic contribution with enthalpic penalty. The free energy of VEGF binding to the ECD is 1.0-1.7 kcal/mol less favorable than for binding to D23. A model of the VEGF-E/ VEGFR-2 ECD complex derived from smallangle scattering data provided evidence for homotypic interactions in D4-7. We also solved the crystal structures of complexes between VEGF-A or VEGF-E with D23, which revealed comparable binding surfaces and similar interactions between the ligands and the receptor, but showed variation in D23 twist angles. The energetically unfavorable homotypic interactions in D4-7 may be required for re-orientation of receptor monomers, and this mechanism might prevent ligand-independent activation of VEGFR-2 to evade the deleterious consequences for blood and lymph vessel homeostasis arising from inappropriate receptor activation. (Blood. 2012;119(7):1781-1788)
IntroductionA plethora of growth factors, such as angiopoietins, VEGF family ligands, platelet-derived growth factors, fibroblast growth factors, and hepatocyte growth factors regulate blood and lymph vessel formation and homeostasis (reviewed in Cao 1 ). VEGFs represent a large family of ligands: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and PlGF, which bind to and activate in a combinatorial fashion 3 type V receptor tyrosine kinases (RTKs), VEGFR-1, VEGFR-2, and VEGFR-3, which give rise to highly specific signal output. In mammals, VEGF-A signaling through VEGFR-2 is the major angiogenic signaling pathway, but VEGF-C plays essential, and in some cases complementary, roles in the activation of this receptor (reviewed in Grünewald et al 2 ). The mechanism by which VEGFRs are activated is not understood in molecular detail, but clearly represents one of the many variations of RTK activation. In general, signaling by RTKs requires ligand-mediated dimerization with precise positioning of receptor subunits in active dimers. Dimeric ligand/receptor complexes subsequently initiate transmembrane signaling, resulting in the activation of the intracellular tyrosine kinase domains. 3,4 Active VEGFRs instigate cell signaling and promote endothelial cell migration and proliferation, as well as vessel fenestration and permeabilization. 5,6 The extracellular domain (ECD) of VEGFRs consists of 7 Ig-homology domains. The first 3 domains mediate ligand binding, 7,8 whereas the membrane proximal domains are involved in ligand-induced receptor dimerization. 7,9 Homotypic receptor i...