Toxoplasma gondii infection is prevalent in humans and animals worldwide. In this study, recombinant eukaryotic expression plasmids (pVAX-GRA24, pVAX-GRA25 and pVAX-MIC6) were constructed, and then injected into Kunming mice intramuscularly, as cocktailed plasmids or as single-gene plasmids. We evaluated immune protective responses by detecting the titer of antibodies and cytokine production of IFN-γ, IL-2, IL-4, IL-10, IL-12 and IL-23, the percentages of the subclasses of T lymphocytes, as well as the records of the survival time and cyst decrement in the brain of the mouse model after challenge with the T. gondii RH and Pru strains, respectively. Compared with the control groups, antibody and cytokine production were significantly increased, while the survival times of mice in all immunized groups were also prolonged, and the number of T. gondii cysts in their brains were decreased significantly (29.03% for pVAX-GRA24; 40.88% for pVAX-GRA25; 37.70% for pVAX-MIC6; 48.06% for pVAX-GRA24 + pVAX-GRA25; and 55.37% for pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6). The mouse group immunized with the three-gene cocktail (TgGRA24 + TgGRA25 + TgMIC6) had better performance in each detection index than the mouse groups immunized with the two-gene cocktail of TgGRA24 + TgGRA25, which was better than that in the group immunized with the single gene vaccine of TgGRA24, TgMIC6 or TgGRA25. In conclusion, TgGRA24 or TgGRA25 may be good vaccine candidates against T. gondii infection, but the three-gene cocktail of TgGRA24, TgMIC6 and TgGRA25 may induce the strongest protective immunity. Further studies of multi-antigenic DNA vaccines or cocktailed vaccines against T. gondii infection are necessary.