We thank S. Piantadosi for many helpful discussions, and the editor and anonymous reviewers for constructive comments on this manuscript. This work was supported by research grants from the National Science Foundation (DRL-0817250, BCS-1400784) and the Air Force Office of Scientific Research (FA9550-12-1-0303).
AbstractIf a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities.2