This work reports the development and optimization of a rapid and low-cost pen-on-paper plotting approach for the fabrication of paper-based analytical devices (PADs) using commercial writing stationery. The desired fluidic patterns were drawn on the paper substrate with commercial marker pens using an inexpensive computer-controlled x–y plotter. For the fabrication of electrochemical PADs, electrodes were further deposited on the devices using a second x–y plotting step with commercial writing pencils. The effect of the fabrication parameters (type of paper, type of marker pen, type of pencil, plotting speed, number of passes, single- vs. double-sided plotting), the chemical resistance of the plotted devices to different solvents and the structural rigidity to multiple loading cycles were assessed. The analytical utility of these devices is demonstrated through application in optical sensing of total phenols using reflectance calorimetry and in electrochemical sensing of paracetamol and ascorbic acid. The proposed manufacturing approach is simple, low cost, flexible, rapid and fit-for-purpose and enables the fabrication of sub-“one-dollar” PADs with satisfactory mechanical and chemical resistance and good analytical performance.