Proceedings of the 1st UK &Amp; Ireland Computing Education Research Conference on - UKICER 2019
DOI: 10.1145/3351287.3351290
|View full text |Cite
|
Sign up to set email alerts
|

The False-Positive Rate of Automated Plagiarism Detection for SQL Assessments

Abstract: Automated assessment is becoming increasingly common in Computer Science and with it automated plagiarism detection is also common. However, little attention has been paid to SQL assessment where submissions are much shorter and must be less varied than in imperative languages. This brings the challenge of avoiding high false-positive rates that require manual inspection and undermine the usefulness of automated detection.In this paper we investigate the false-positive rate of various automated plagiarism dete… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…Allerdings ist die Aussagekraft gerade bei Aufgaben auf Anfängerniveau beschränkt: Mitunter umfasst der Lösungsraum, die Anzahl der unterschiedlichen Formulierungen einer SQL-Anfrage (bis auf Groß-Kleinschreibung) nur wenige Zeichenketten, so dass ein Plagiats-Checker zu viele Falsch-Positive generieren würde. Erste Studien in diese Richtung bestätigen diese Hypothese [35].…”
Section: Diskussion Und Ausblickunclassified
“…Allerdings ist die Aussagekraft gerade bei Aufgaben auf Anfängerniveau beschränkt: Mitunter umfasst der Lösungsraum, die Anzahl der unterschiedlichen Formulierungen einer SQL-Anfrage (bis auf Groß-Kleinschreibung) nur wenige Zeichenketten, so dass ein Plagiats-Checker zu viele Falsch-Positive generieren würde. Erste Studien in diese Richtung bestätigen diese Hypothese [35].…”
Section: Diskussion Und Ausblickunclassified
“…The last two stages (similarity confirmation and investigation) require human intervention, and their accuracy and completion time are heavily affected by the number of false positives generated by the tool; that is, student submissions that are marked as suspicious when they have not actually been copied. This number can be high if the tool's preprocessing nullifies too much program variation while the assessments are too simple, as in first-year courses [14,20]; when they use a restrictive programming language, such as SQL [27] or Verilog [44]; or when they incorporate common 'starter code' provided for them to use [3].…”
Section: Culwin and Lancastermentioning
confidence: 99%