1987
DOI: 10.1109/tc.1987.1676877
|View full text |Cite
|
Sign up to set email alerts
|

The Fast Hartley Transform Algorithm

Abstract: Назва кваліфікаційної роботи бакалавра:(назви записувати нижнім регістром) Комп'ютеризована система "Аналізатор аудіспектру" Назва (англ.):(переклад англійською) Computerized system "Audispectrum Analyzer" Освітній ступінь: бакалавр Шифр та назва спеціальності: 123 Комп'ютерна інженерія (напр.: 151 Автоматизація та комп'ютерно-інтегровані технології)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
45
0
1

Year Published

1994
1994
2018
2018

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 154 publications
(46 citation statements)
references
References 18 publications
0
45
0
1
Order By: Relevance
“…In this paper, an efficient and numerically stable FFT algorithm (Hou 1987;Burrus and Eschenbacher 1981) is used to calculate the minimum step size required for interpolation of Euler angles. For a given angle, the frequency corresponding to the largest spike in the Fourier transformed space is recorded and the corresponding time step is calculated.…”
Section: Ace Computationmentioning
confidence: 99%
“…In this paper, an efficient and numerically stable FFT algorithm (Hou 1987;Burrus and Eschenbacher 1981) is used to calculate the minimum step size required for interpolation of Euler angles. For a given angle, the frequency corresponding to the largest spike in the Fourier transformed space is recorded and the corresponding time step is calculated.…”
Section: Ace Computationmentioning
confidence: 99%
“…This aspect can be usefully exploited for computation of discrete Hartley transform (DHT). As is well known, Hou [10], DHT can yield DFT, hence, the proposed structure becomes potential for computation of DCT, DST, DHT as well as DFT.…”
Section: Introductionmentioning
confidence: 95%
“…Above all, the discrete Hartley basis (DHB) has a similar analysis capacity as the fast Fourier transform (FFT) for dealing with harmonics [21] and a low correlation with the identity matrix [22]. In order to design a dictionary possessing discernibility in the time domain and the frequency domain, a combination of DHB and an identity matrix was constructed.…”
Section: Introductionmentioning
confidence: 99%