Very high concentrations of acetic acid at low pH induce programmed cell death
(PCD) in both the experimental model Saccharomyces cerevisiae
and in Zygosaccharomyces bailii, the latter being considered
the most problematic acidic food spoilage yeast due to its remarkable intrinsic
resistance to this food preservative. However, while the mechanisms underlying
S. cerevisiae PCD induced by acetic acid have been
previously examined, the corresponding molecular players remain largely unknown
in Z. bailii. Also, the reason why acetic acid concentrations
known to be necrotic for S. cerevisiae induce PCD with an
apoptotic phenotype in Z. bailii remains to be elucidated. In
this study, a 2-DE-based expression mitochondrial proteomic analysis was
explored to obtain new insights into the mechanisms involved in PCD in the
Z. bailii derived hybrid strain ISA1307. This allowed the
quantitative assessment of expression of protein species derived from each of
the parental strains, with special emphasis on the processes taking place in the
mitochondria known to play a key role in acetic acid - induced PCD. A marked
decrease in the content of proteins involved in mitochondrial metabolism, in
particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a
concomitant increase in the abundance of proteins involved in fermentation
(Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified
proteins also suggest the involvement of the oxidative stress response, protein
translation, amino acid and nucleotide metabolism, among other processes, in the
PCD response. Overall, the results strengthen the emerging concept of the
importance of metabolic regulation of yeast PCD.