Body size trends across environmental gradients are widely reported but poorly understood. Here, we investigate contrasting relationships between size (body mass) and depth in the scavenging and predatory demersal ichthyofauna (800-4800 m) of the North-east Atlantic. The mean size of scavenging fish, identified as those regularly attracted to baited cameras, increased significantly with depth, while in nonscavengers there was a significant decline in size. The increase in scavenger size is a consequence of both intra and inter-specific effects. The observation of opposing relationships, in different functional groups, across the same environmental gradient indicates ecological rather than physiological causes. Simple energetic models indicate that the dissimilarity can be explained by different patterns of food distribution. While food availability declines with depth for both groups, the food is likely to be in large, randomly distributed packages for scavengers and as smaller but more evenly distributed items for predators. Larger size in scavengers permits higher swimming speeds, greater endurance as a consequence of larger energy reserves and lower mass specific metabolic rate, factors that are critical to survival on sporadic food items.