Coalescing macroalgae are ecologically important members of intertidal and shallow subtidal communities. However, we still lack quantitative information on the demographic consequences of coalescence. Using demographic models developed for modular invertebrates, we studied the demography of settlement and early recruitment in the coalescing macroalga Mazzaella laminarioides (Bory) Fredericq. Permanently marked microscopic fields on laboratory-incubated and field-incubated plates were monitored regularly (at 15, 30, 45, and 60 d) using image analysis techniques to evaluate the relative importance of settler abundance, mortality, coalescence (fusion), and fission on the changes in size and numbers of recruits. On the plates, spores settled individually or in groups. Over time, spores in close proximity may coalesce, resulting in a mixture of unisporic and multisporic crusts. When new spores arrive, they may or may not coalesce with previously settled crusts. Coalescence and mortality reduce the number of sporelings, but coalescence increases the size of the sporelings, thereby reducing further probability of sporeling mortality. Crust fissions are negligible in frequency, while the frequency of coalescence increases from ∼25% after only 3 d, to ∼75% after 60 d. Thus, as a result of variable settlement, mortality, and coalescence, any area colonized by M. laminarioides would contain a mixture of crusts of different sizes, ages, and genetic constitution. The interactions between the above three processes create a more complex survivorship curve than the ones known for unitary organisms.