ObjectiveTo systematically evaluate the accuracy of Raman spectroscopy in the diagnosis of Alzheimer's disease.MethodsDatabases including Web of Science, PubMed, The Cochrane Library, EMbase, CBM, CNKI, Wan Fang Data, and VIP were electronically searched for studies on Raman spectroscopy in diagnosis of Alzheimer's disease from inception to November 2022. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias in the included studies. Then, meta-analysis was performed using Meta-Disc1.4 and Stata 16.0 software.ResultsA total of eight studies were finally included. The pooled sensitivity of Raman spectroscopy was 0.86 [95% CI (0.80–0.91)], specificity was 0.87 [95% CI (0.79–0.92)], positive likelihood ratio was 5.50 [95% CI (3.55–8.51)], negative likelihood ratio was 0.17 [95% CI (0.09–0.34)], diagnosis odds ratio and area under the curve of SROC were 42.44 [95% CI (19.80–90.97)] and 0.931, respectively. Sensitivity analysis was carried out after each study was excluded one by one, and the results showed that pooled sensitivity and specificity had no significant change, indicating that the stability of the meta-analysis results was great.ConclusionsOur findings indicated that Raman spectroscopy had high accuracy in the diagnosis of AD, though it still did not rule out the possibility of misdiagnosis and missed diagnosis. Limited by the quantity and quality of the included studies, the above conclusions need to be verified by more high-quality studies.