Emotion recognition is very important for the humans in order to enhance the self-awareness and react correctly to the actions around them. Based on the complication and series of emotions, EEG-enabled emotion recognition is still a difficult issue. Hence, an effective human recognition approach is designed using the proposed feedback artificial shuffled shepherd optimization- (FASSO-) based deep maxout network (DMN) for recognizing emotions using EEG signals. The proposed technique incorporates feedback artificial tree (FAT) algorithm and shuffled shepherd optimization algorithm (SSOA). Here, median filter is used for preprocessing to remove the noise present in the EEG signals. The features, like DWT, spectral flatness, logarithmic band power, fluctuation index, spectral decrease, spectral roll-off, and relative energy, are extracted to perform further processing. Based on the data augmented results, emotion recognition can be accomplished using the DMN, where the training process of the DMN is performed using the proposed FASSO method. Furthermore, the experimental results and performance analysis of the proposed algorithm provide efficient performance with respect to accuracy, specificity, and sensitivity with the maximal values of 0.889, 0.89, and 0.886, respectively.