Despite recent advances in the systemic treatment of gastroesophageal cancers, prognosis remains poor. Comprehensive molecular analyses have characterized the genomic landscape of gastroesophageal cancer that has established therapeutic targets such as human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor (VEGFR) and programmed death ligand 1 (PD-L1). The aberrant fibroblast growth factor receptor 2 (FGFR2) pathway is attractive for targetable therapy with FGFR inhibition based on preclinical data showing a pivotal role in the progression of gastric cancer (GC).
FGFR2
amplification is the most common
FGFR2
gene aberration in gastroesophageal cancer, and most associated with diffuse GC, which is often linked to poorer prognostic outcomes. There has been considerable progress with drug development focused on FGFR inhibition. At present, there is no approved FGFR inhibitor for FGFR2 positive gastroesophageal cancer. A selective FGFR2b monoclonal antibody bemarituzumab is currently being investigated in the first phase III randomized trial for patients with first line advanced GC, which may change the treatment paradigm for FGFR2b positive GC. The role of FGFR signalling, specifically
FGFR2
, is less established in oesophageal squamous cell cancer (ESCC) with a paucity of evidence for clinical benefit in these patients. Precision medicine is part of the wider approach in gastrointestinal cancers; however, it can be challenging due to heterogeneity and here circulating tumour DNA (ctDNA) for patient selection may have future clinical utility. In our review, we outline the FGFR pathway and focus on the developments and challenges of targeting FGFR2 driven gastroesophageal cancers.