2019
DOI: 10.1017/s0004972719001035
|View full text |Cite
|
Sign up to set email alerts
|

The Finite Basis Problem for Involution Semigroups of Triangular Matrices

Abstract: Let $T_{n}(\mathbb{F})$ be the semigroup of all upper triangular $n\times n$ matrices over a field $\mathbb{F}$. Let $UT_{n}(\mathbb{F})$ and $UT_{n}^{\pm 1}(\mathbb{F})$ be subsemigroups of $T_{n}(\mathbb{F})$, respectively, having $0$s and/or $1$s on the main diagonal and $0$s and/or $\pm 1$s on the main diagonal. We give some sufficient conditions under which an involution semigroup is nonfinitely based. As an application, we show that $UT_{2}(\mathbb{F}),UT_{2}^{\pm 1}(\mathbb{F})$ and $T_{2}(\mathbb{F})$ … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 23 publications
0
0
0
Order By: Relevance